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a difference is quite small,47 if one takes into account the as
sumption made, the inherent accuracy of semiempirical methods, 
and especially the dramatic and constant decrease of the AE value 
following the application of greatly refined, and hence more 
trustworthy theroretical, calculations to the unsubstituted phe-
nylium ion. It is difficult to assess, at the present time, whether 
mechanism 6, based on 1,2 hydride shifts, would be consistent 
with the results of higher level theoretical methods, as those 
recently applied to C6H5

+. In any event, the discrepancy, if any, 
should not be nearly as serious as with earlier semiempirical results. 

As to the relative stability of tolyl ions, the order deduced from 
the MINDO/3 approach, i.e., para < meta < ortho, is not con
sistent with the experimental evidence from this study, pointing 
to an increase of the product deriving from Ic and to a simul
taneous decrease of the product from la at low MeOH pressures. 

On the other hand, the energy barrier of process 7, e.g., Ic —*-
4 calculated at the MINDO/3 level, was 25 kcal mol"1, consid
erably lower than of process 6, e.g., Ib -» Ic, namely 38.9 kcal 
mol"1. Consequently, excited tolyl ions lb were predicted to 
collapse directly to 4, without being trapped as Ic.26 This view 
is at variance with the experimental results of this study, that 
provides positive evidence against occurrence of isomerization 7 
of tolyl ions which instead appear capable of significant inter-
conversion. 

Independent evidence supports the view that the activation 
energy of process 7 exceeds the barrier calculated at the MIN
DO/3 level. In fact, tolyl ions formed in the mass spectrometer 
via the reaction of H3

+ ions with p-fluorotoluene, whose exo-
thermicity (-57 kcal mor1) is much larger than the calculated 
barrier, fail to isomerize into benzyl cations, despite the relatively 
low H2 pressure (<1 torr) and the high temperature (160 0C) 
prevailing in the ion source.22 

Comparison with Mass Spectrometric Results. Once the dif
ferences existing in the time scale and the excitation mechanism 
typical of the two experimental approaches are taken into account, 
the results from the application of the decay technique to gaseous 
tolyl ions support, in general, the conclusions of pertinent mass 
spectrometric studies. 

(47) One of the referees has suggested that the contribution from the 
thermal vibrational energy of the parent toluene molecules could further 
reduce the modest difference. 

(48) Tajima, S.; Niwa, Y.; Nakajima, M.; Tsuchiya, T. Bull. Chem. Soc. 
Jpn. 1971, 44, 2340. 

1. History and Introduction 
Cyclic ir-electron systems and their special (often "aromatic") 

features have long been of much interest. Huckel's1 celebrated 
4n + 2 rule provided a key step toward elucidating these features. 
As such, it has been acclaimed2"4 one of the most fundamental 
rules of chemistry and has found5"7 wide applicability among 
(organic) chemists. The original rule states that the planar 
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In fact, species tentatively identified as tolyl ions with use of 
indirect structural criteria based on the nature of their neutral 
precursors, or by diagnostic techniques such as collisional activation 
(CA), have been obtained in a state of high purity (>90%) by 
electron impact15'17,18'48 or by chemical ionization18,22'49 mass 
spectrometry. 

These species appear to survive as long as 10"5 s without re
arrangement to the benzyl or tropylium structure,18 despite the 
excitation energy from their formation processes. In this con
nection, the present study provides "hard" confirmatory evidence, 
based on the actual isolation of structurally diagnostic products, 
for the occurrence of tolyl ions as distinct species in the dilute 
gas state. The different rate of processes 6 and 7, deduced from 
the decay experiments, is also consistent with the mass spectro
metric evidence. First, the low rate of (7) explains the surprising 
stability of tolyl ions with respect to isomerization to benzyl, or 
tropylium cations, noted in mass spectrometric studies.17,18 

Furthermore, process 6, observed in the present study even at 
"high" pressures (6 to 100 torr), is expected to be much more 
efficient at the excitation levels and the low pressures typical of 
mass spectrometry, thus causing complete equilibration of tolyl 
ions 1 with sufficient internal energy to the most stable ortho 
isomer Ic we// before structural assay by CA. This could explain 
the observation that tolyl ions, irrespective of their precursor and 
therefore, presumably, of their initial isomeric composition, exhibit 
nearly identical CA spectra, which, however, are different from 
those of benzyl or tropylium ions, excluding rearrangement of 1 
into either of these common structures. 
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monocyclic systems containing {An + 2) 7r-electrons are expected 
to exhibit aromatic stability. A later amendment states that the 
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Table I. The Huckel-Mobius Rule 

Huckel 
Mobius 

Nt = An + 2 Nc = An 

aromatic antiaromatic 
antiaromatic aromatic 

corresponding An ^--electron systems should be8,9 unstable and 
exhibit antiaromatic properties. Extensive experimental work, 
especially in the areas of annulene, bridged-annulene, and het-
eroannulene chemistry, abundantly confirm2,3,5"9 the general va
lidity of the Huckel model. 

Even before Hilckel's work, the special features of benzene (the 
most common and stable 4« + 2 cycle) had been widely recog
nized. For instance, the rule of six indicated10 that cyclic 
structures containing six "benzene-like valencies" (i.e., six planar 
7r-electrons) should show unusual stability (in both thermodynamic 
and kinetic senses). Thiele's synthesis11 of cyclopentadienyl anion 
in 1900 provided an early test of the rule. A valence-bond-like 
view of aromaticity in terms of "aromatic sextets" was presented 
by Armitt and Robinson12 in the 1920s and then developed by 
Clar. 

Hiickel's treatment1 also drew the attention of many theore
ticians. In addition to chemical properties as an index to aro
maticity, they advocated as indexes various other physical prop
erties, including thermodynamic stability,1,13,14 bond lengths,3,14 

magnetic properties,15 and symmetry.16 It was argued that as 
n increases both (An + 2) and An 7r-systems (annulenes) converge 
to a mean nonaromaticity, and this was experimentally confirmed.5 

The relations of Hiickel-type rules to many cases of the Wood
ward-Hoffmann rules were elucidated.17,18 Extensions to planar 

(3) (a) Dewar, M. J. S. "The Molecular Orbital Theory of Organic 
Chemistry"; McGraw-Hill: New York, 1969; p 219. (b) Dewar, M. J. S.; 
Dougherty, R. C. "The PMO Theory of Organic Chemistry"; Plenum Press: 
New York, 1975; p 95. 

(4) (a) Cava, M. P.; Mitchell, M. J. "Cyclobutadiene and Related 
Compounds"; Academic Press: New York, 1967. (b) Badger, G. M. 
"Aromatic Character and Aromaticity"; Cambridge University Press: Cam
bridge, MA, 1969. (c) Garratt, P. J. "Aromaticity"; McGraw-Hill: New 
York, 1971. (d) Lewis, D.; Peters, D. "Facts and Theories of Aromaticity"; 
MacMillan: London, 1975. 

(5) (a) Sondheimer, F. Pure Appl. Chem. 1963, 7, 363. (b) Sondheimer, 
F. Proc. R. Soc. London, Ser. A 1967, 297, 173. (c) Sondheimer, F. Proc. 
Robert A. Welch Found. Conf. Chem. Res. 1968, 12, 125. (d) Sondheimer, 
F. Ace. Chem. Res. 1972, 5, 81. (e) Sondheimer, F. Chimia 1974, 28, 163. 

(6) (a) Vogel, E. Spec. Publ. Chem. Soc. 1967, 21, 113. (b) Vogel, E. Isr. 
J. Chem. 1980, 20, 215. (c) Vogel, E. Pure Appl. Chem. 1982, 54, 1015. (d) 
Anastassiou, A. G. Ace. Chem. Res. 1972, 5, 281. (e) Anastassiou, A. G. Pure 
Appl. Chem. 1975, 44, 691. (f) Anastassiou, A. G.; Kasmai, H. S. Adv. 
Heterocycl. Chem. 1978, 23, 55. 

(7) (a) Doering, W. von E.; DePuy, C. H. J. Am. Chem. Soc. 1953, 75, 
5955. (b) Doering, W. von E.; Knox, L. H. J. Am. Chem. Soc. 1954, 76, 3203. 
(c) Dewar, M. J. S.; Pettit, R. Chem. Ind. (London) 1955, 199; J. Chem. Soc. 
1956, 2021; 1956, 2076. (d) Dauben, H. J.; Gadecki, F. A.; Harmon, K. M.; 
Pearson, D. L. / . Am. Chem. Soc. 1957, 79, 4557. (e) Ganellin, C. R.; Pettit, 
R. J. Am. Chem. Soc. 1957, 79, 1767. 

(8) Breslow, R.; Mohacsi, E. J. Am. Chem. Soc. 1963, 85, 431. 
(9) (a) Breslow, R. Chem. Eng. News 1965, 43, 90. (b) Breslow, R. Ace. 

Chem. Res. 1973, 6, 393. (c) Dewar, M. J. S. Adv. Chem. Phys. 1965, 8, 65. 
(10) (a) Armstrong, H. E. / . Chem. Soc. 1887, 264. (b) Bamberger, E. 

Liebigs Ann. Chem. 1890, 257, 1; 1890, 257, Al; 1893, 273, 373. 
(11) Thiele, J. Ber. Dtsch. Chem. Ges. 1900, 33, 666. 
(12) Armitt, J. W.; Robinson, R. J. Chem. Soc. 1922, 827; Ibid. 1925, 

1604. 
(13) (a) Longuet-Higgins, H. C; Salem, L. Proc. R. Soc. London, Ser. A 

1960, 257, 445. (b) Dewar, M. J. S.; Gleicher, G. Y. J. Am. Chem. Soc. 1965, 
87, 685. (c) Kruszewski, J.; Krygowski, T. M. Tetrahedron Lett. 1970, 319. 
(d) Hess, Jr., B. A.; Schaad, L. J. J. Am. Chem. Soc. 1971, 93, 305. (e) 
Gutman, I.; Milun, M.; Trinajstic, N. Croat. Chem. Acta 1977, 49, 441. 

(14) (a) Pauling, L In "The Nature of the Chemical Bond", 3rd ed.; 
Cornell University Press: Ithaca, NY, 1960. (b) Mulliken, R. S.; Parr, R. 
G. / . Chem. Phys. 1951, 19, 1271. 

(15) (a) Pople, J. A.; Untch, K. G. J. Am. Chem. Soc. 1966, 88, 4811. (b) 
Longuet-Higgins, H. C. Spec. Publ. Chem. Soc. 1967, 21, 109. (c) Haddon, 
R. C; Haddon, V. R.; Jackman, L. M. Fortschr. Chem. Forsch. 1970/1971, 
16, 103. (d) Haddon, R. C. Tetrahedron 1972, 28, 3635. (e) Schmalz, T. 
G.; Gierke, T. D.; Beak, P.; Flygare, W. H. Tetrahedron Lett. 1974, 2885. 
(f) Mallion, R. B. Pure Appl. Chem. 1980, 52, 1541. 

(16) Craig, D. P. J. Chem. Soc. 1951, 3175. 
(17) Dewar, M. J. S. Angew. Chem., Intl. Ed. Engl. 1971, 10, 761. 

polycyclic conjugated hydrocarbons,3,19 as well as to20 inorganic 
systems and three-dimensional frameworks, were suggested. 

Another extension by Mason and Zimmerman21 was made for 
application to cyclic arrays including the possibility of phase 
dislocations between adjacent orbitals. That is, they allowed for 
the possibility of negative overlap (and positive resonance integrals) 
between adjacent orbitals. Such systems were partitioned21,22 into 
two types: Huckel systems with an even number of sign changes 
and Mobius systems with an odd number. The earlier Huckel 
rule was then argued to apply exclusively to Huckel systems, while 
for Mobius systems the role of (An + 2)- and 4«-electron systems 
was interchanged. Thus the overall Huckel-Mobius rule is as 
summarized in Table I. All these various rules, including the 
possibility of special characteristics for (An ± 1) 7r-electron systems, 
have been23 termed modulo 4 rules. 

A further crucial theoretical point concerns the extension of 
Hiickel's argument beyond the simple (Huckel) model he used. 
The closely parallel results24 for the free-electron model are un
surprising, since this model is nothing but a "continuum analogue" 
of Hiickel's discrete model. The ready extension of Hiickel's 
argument to Hartree-Fock solutions3,25,26 of better models (e.g., 
the Pariser-Parr-Pople (PPP) model) is also unsurprising. The 
central question concerns the possible effects of "electron 
correlation". There are, of course, brute force configuration 
interaction computations for various improved models. These27"29 

make individual (valuable but piecemeal) tests of different aspects 
of the rule and often seem to verify the rules' predictions. In fact, 
an apparently successful interpretation of the results from a 
number of such calculations has been made29 to predict ground-
state spin multiplicities based upon the manner of localization of 
near nonbonding molecular (or natural) orbitals. In another view 
toward general statements, there have been some approximate 
treatments of valence-bond (VB) models30,31 and of PPP mod-

(18) (a) Zimmerman, H. E. Ace. Chem. Res. 1971, 4, 272. (b) Zim
merman, H. E. In "Pericyclic Reactions"; Marehand, A. P., Lehr, R. E., Eds.; 
Academic Press: New York, 1977; Vol. I. 

(19) (a) Piatt, J. R. J. Chem. Phys. 1954, 22, 1448. (b) Kruszewski, J.; 
Krygowski, T. M. Can. J. Chem. 1975, 53, 945. (c) Gutman, I.; Trinajstic, 
N. Can. J. Chem. 1976, 54, 1789. (d) Gutman, I.; Trinajstic, N. J. Chem. 
Phys. 1976, 64, 4921. (e) Randic, M. /. Am. Chem. Soc. 1977, 99, AAA. (f) 
Randic, M. Tetrahedron 1977, 33, 1905. 

(20) See, e.g.: (a) Collins, J. B.; Schleyer, P. v. R. Inorg. Chem. 1977, 16, 
152. (b) King, R. B.; Rouvary, D. H. /. Am. Chem. Soc. 1977, 99, 7834. (c) 
Jemmis, E. D.; Schleyer, R. v. R. / . Am. Chem. Soc. 1982, 104, 4781. (d) 
Gimarc, B. M.; Trinajstic, N. Pure Appl. Chem. 1980, 52, 1443. 

(21) (a) Mason, S. F. Nature (London) 1965, 205, 495. (b) Zimmerman, 
H. E. J. Am. Chem. Soc. 1966, 88, 1565, 1566. (c) Zimmerman, H. E. 
Science (Washington, D.C.) 1966, 153, 837. 

(22) Heilbronner, E. Tetrahedron Lett. 1964, 1923. 
(23) Gutman, I.; Trinajstic, N. Scientia Yug. (Zagreb) 1974, /, 1. 
(24) Piatt, J. R.; Ruedenberg, K.; Scherr, C. W.; Ham, N. S.; Labhart, 

H.; Lichten, W. "Free-Electron Theory of Conjugated Molecules—A Source 
Book"; Wiley: New York, 1960. 

(25) See, e.g.: (a) Parr, R. G. "Quantum Theory of Electronic Structure"; 
W. A. Benjamin: New York, 1964. (b) McGlynn, S. P.; Vanquickenborne, 
L. G.; Kinoshita, M.; Caroll, D. G. "Introduction to Applied Quantum 
Chemistry"; Holt, Rinehart, and Winston: New York, 1972. 

(26) Zimmerman, H. E. Tetrahedron 1982, 38, 753. 
(27) (a) Buenker, R. J.; Whitten, J. L.; Petke, J. D. J. Chem. Phys. 1968, 

49, 2261. (b) Peyerimhoff, S. D.; Buenker, R. J. Theor. Chim. Acta 1970, 
19, 1. (c) Hay, P. J.; Shavitt, I. J. Chem. Phys. 1974, 60, 2865. (d) Norbeck, 
J. M.; Gallup, G. A. J. Am. Chem. Soc. 1974, 96, 3386. (e) Niessen, W. v.; 
Kraemer, W. P.; Cederbaum, L. S. J. Electron Spectrosc. Relat. Phenom. 
1976, 8, 176. (0 Kollmar, H.; Staemmler, V. J. Am. Chem. Soc. 1978, 100, 
4304. (g) Borden, W. T.; Davidson, E. R.; Hart, P. Ibid. 1978, 100, 388. (h) 
Takuda, T.; Ohno, K. Bull. Chem. Soc. Jpn. 1979, 52, 334. (i) Borden, W. 
T.; Davidson, E. R.; Feller, D. J. Am. Chem. Soc. 1981, 103, 5725. (j) 
Siegbahn, Per E. M.; Yoshimine, M.; Pacansky, J. / . Chem. Phys. 1983, 78, 
1384. 

(28) See, e.g.: (a) Parr, R. G.; Craig, D. P.; Ross, I. G. J. Chem. Phys. 
1950,18, 1561. (b) McWeeny, R. Proc. R. Soc. London, Ser. A 1955, 227, 
288. (c) Koutecky, J.; Paldus, J.; Zahradnik, R. J. Chem. Phys. 1962, 36, 
3129. (d) Snyder, L. C. J. Phys. Chem. 1962, 66, 2299. (e) Linderberg, J.; 
Thulstrup, E. W. / . Chem. Phys. 1968, 49, 710. (f) Hirota, F.; Nagakura, 
S. Bull. Chem. Soc. Jpn. 1970, 43, 1010. (g) Cizek, J.; Pellegatti, A.; Paldus, 
J. Int. J. Quantum Chem. 1975, 9, 987. (h) Borden, W. T. J. Am. Chem. Soc. 
1975, 97, 5968. (i) Bigelow, R. W. J. Chem. Phys. 1979, 70, 2315. 

(29) (a) Borden, W. T.; Davidson, E. R. Ace. Chem. Res. 1981, 14, 69. 
(b) Dohnert, D.; Koutecky, J. J. Am. Chem. Soc. 1979, 102, 1789. (c) Itoh, 
K. Pure Appl. Chem. 1978, 50, 1251. 
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els.32"34 There are some exact results35 for the VB model (with 
nearest-neighbor interactions and covalent structures only). Exact 
results for "better" models, including correlation, are quite rare; 
one exception36 relates energies of certain Mobius and Huckel 
annulenes. 

Here we develop some general exact results simultaneously 
applicable to all the above-identified models, as well as others, 
generally including electron correlation, over a whole range of 
parametrizations, for homo- or heteroannulenes or various distorted 
cycles, either of Huckel or Mobius type. With such a general class 
of models the theorematic consequences are somewhat weaker 
than for the usual Huckel rules, but much of the general "flavor" 
is found to be preserved. On the other hand, these theorematic 
results fall short of dealing with the full (nonrelativistic, fixed-
nucleus) coordinate-space Hamiltonian in the Schrodinger picture, 
but the general class of models dealt with here is widely believed 
to include "very reasonable" effective Hamiltonians. Most of the 
present results proceed via the Frobenius-Perron theorem,37 much 
as implicitly used by Lieb and Mattis38 to establish some exact 
results for linear chain systems. 

A general descriptive discussion of the various models included 
and results obtained is found in section 7, which is designed to 
be easily read without necessarily going through the more precise 
formalities and proofs in the intervening sections. Section 2 defines 
a class of models in a concise second-quantized framework, and 
section 3 gives symmetries that at least some of these models 
exhibit. Formal theorems for this class of models are developed 
in section 4, where an advantage of second quantization is seen 
in keeping track of crucial phases. Section 5 establishes some 
additional results involving point-group or "particle-hole" sym
metries. Section 6 shows how the theorems extend to an even 
wider class of models. 

2. 7r-Electron Models 

The models are defined on the space spanned by (2pz) 7r-orbitals, 
one to each atom of the ir-network. (The electrons not occupying 
these T-orbitals often are viewed as being "frozen" in lower-lying 
doubly occupied a-orbitals.) Operations in this space are con
veniently expressed in terms of Fermion creation and annihilation 
operators, a+

l<T and a,v, for x,„, a spin-o- orbital on atom /. That 
is, a+

i<7 acting on a (normalized) Slater determinant gives a new 
(normalized) Slater determinant differing from the old only in 
having an additional electron in the orbital Xi„'< the operator a,„ 
accomplishes the "reverse" process. As a consequence of the Pauli 
exclusion principle, these operators satisfy the Fermion anticom-
mutation relations 

a W = -<»V+<„ (2.1) 

a+i^jr = S,j8„ - ajra
+

ia 

Also of importance are the number operators 

«,- = "+
iaaia + a+Hflif, (2.2) 

(30) (a) Fischer, H.; Murrell, J. N. Theor. Chim. Acta 1963, /, 463. (b) 
Mulder, J. J. C; Osterhoff, L. J. Chem. Commun. 1970, 305. (c) van der 
Hart, W. J.; Mulder, J. J. C; Oosterhoff, L. J. J. Am. Chem. Soc. 1972, 94, 
5724. (d) Epiotis, N. D.; Shaik, S. J. Am. Chem. Soc. 1978, 100, 1. 

(31) Epiotis, N. D. Led. Notes Chem. 1982, 29; 1982, 34. 
(32) (a) Grundler, W. Z. Chem. 1978, 18, 351, 422. (b) Grundler, W. 

Monatsh. Chem. 1982, 113, 15; Ibid. 1983, 114, 155. 
(33) (a) Zivkovie, T. Theor. Chim. Acta 1982, 61, 63; Ibid. 1983, 62, 335. 

(b) Zivkovie, T. Croat. Chem. Acta 1983, 56, 29. (c) Zivkovi£, T. Int. J. 
Quantum Chem. 1983, 23, 679. 

(34) (a) Cizek, J.; Paldus, J.; Hubac, I. Int. J. Quantum Chem. 1974, 8, 
951. (b) Paldus, J.; Cizek, J.; Hubac, I. Int. J. Quantum Chem. 197'A, 8S, 
293. 

(35) Klein, D. J. / . Chem. Phys. 1982, 77, 3098. 
(36) Harris, R. A. Chem. Phys. Lett. 1983, 95, 256. 
(37) See, e.g.: Gantmacher, F. R. In "The Theory of Matrices"; Chelsea: 

New York, 1963; Vol. II, Chapter 13. 
(38) Lieb, E. H.; Mattis, D. C. Phys. Rev. 1962, 125, 164. 

which when applied to a configuration with the ir-orbital occu
pancy of site j fixed (at 0, 1, or 2) give the same configuration 
back multiplied by this occupancy value (0, 1, or 2). 

The model Hamiltonians which we consider are of the general 
form 

N 

ft = ZT,(t u+ia+
ica,+l„ + ti+ua

+
i+uaic) + 

( = 1 tr 

N 

2ZJij+[a
+

iaa
+

i+10awai+la + V(nhn2 nN) (2.3) 
i'=i 

where we have presumed N sites, with the site index N + 1 being 
interpreted as equivalent to site index 1. That the potential V 
is a real function only of the number operators (2.2) is equivalent 
to saying that V is spin independent and "local" (on the atomic 
basis). The t and J terms in ft are, respectively, the kinetic energy 
and exchange terms. They account for the graph-theoretic (or 
chemical-structure theoretic) nature of the model in that the 
parameters ?;j and JtJ are taken to be nonzero only between 
nearest-neighbor sites in the cycle. The Hermicity of ft implies 
that JQ = Jjj is real and that t*tJ = tjj. We restrict our attention 
to Hamiltonians for which 

JiJ+1 < 0 i = 1 to TV (2.4) 

and for which the t:j are real with 

f,,,-+, < 0 I = 1 to JV - 1 (2.5) 

The sign of (2.4) is that appropriate for VB-type models, while 
the sign of (2.5) is appropriate for PPP-type models of ordinary 
planar x-networks (with the usual phase convention for orbitals). 
Finally, if J1N ^ 0, we assume it to be real and denote its sign 
by 

s = sign(f1JV) = s i g n a l ) (2.6) 

Hs = - 1 , the cycle is said to be Huckel, whereas if 5 = +1, the 
cycle is said to be Mobius. 

3. Symmetries 
All the Hamiltonians ft of the previous section are "spin free" 

and consequently commute with spin-space operations. Thus, the 
total spin S2 and z-component of spin Sz operators, which commute 
with one another, provide exact quantum numbers, 5 and Ms, 
for the eigenstates of ft. 

A reflection symmetry occurs when ttj = t_jH and J^ = J-JH 

where -k s N - k + 1 identifies the site to which site k is carried 
by the reflection <r0. The action of a0 on the ir-orbitals may be 
defined via 

M + * . V = a+-k, (3.1) 

whence we see that &0 commutes with the kinetic energy term of 
ft. With the presumption that Valso is invariant under a0 we 
see that <T0 provides quantum numbers of the eigenstates to ft. 

A cyclic type of point-group symmetry occurs when the JiJ+] 

are all equal and the nonzero t/j are all equal in magnitude; in 
particular, tjj+i = tjj+l are all negative except possibly for tiJV 

= tNl, which has sign s. The action of a (perhaps "twisted") 
rotation C by 2ir/N in the clockwise direction is defined via 

Ca+
kaC-1 = a+

k+u k = 1 to N - 1 
= -sa+

u k = N (3.2) 

Then C transforms hj to +n,+1, and with the presumption that K(Zi1, 
..., HN) is invariant under such permutations of its arguments, it 
seen that C commutes with H. Thus, the group generated by C 
provides irreducible representation labels for the eigenstates of 
ft. If both <r0 and C commute with ft, then the associated larger 
group CNl> (or its double group26 if 5 = +1) provides labels. 

Finally, there is39 the so-called "particle-hole symmetry" op
erator 

(39) (a) McLachlan, A. D. MoI. Phys. 1961, 4, 49. (b) Koutecky, J. / . 
Chem. Phys. 1966, 44, 3702. 
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K = im\Pa+jo + {-tyaj,} (3.3) 1JT i 

123 134 This is readily verified to be unitary and to interchange creation 
and annihilation operators 

Ka1Jt = a+j, and Ka+^ = aja (3.4) 

Then K carries ^-electron spaces to (2iV - TVe)-electron spaces, 
and the Hamiltonian ft of (2.3) is transformed to a Hamiltonian 
which is the same except that tx^ = tNl is replaced by (-I)^i1Ar 
and the arguments n, of V are changed to 1 - H1. Thus, K does 
not ordinarily commute with ft, but this transformation will still 
have interesting consequences. 

4. Basic Theorems 
The results we establish here are based upon developments37 

originally due to Frobenius and Perron. We use (without proof) 
their theorem: 

Theorem 1—Suppose that on a particular basis a Hermitian 
operator ft has all off-diagonal matrix elements nonpositive. 
Further, suppose that the matrix representation of ft is not block 
diagonalizable by any simultaneous permutation of rows and 
columns. Then the minimum eigenvalue is nondegenerate, and 
the associated eigenvector has all positive coefficients. 

The particular basis we employ for the 7r-electron space is 
expressed in terms of sets A and B of sites to which a- and |8-spins 
can be assigned. Each choice for A and B identifies a basis ket 

\A,B) = II a+
IO II a+

j0\O) (4.1) 
UA JtB 

where |0> is the "vacuum" ket and the products are chosen to be 
ordered (from small to large indexes). These basis kets may be 
viewed simply as Slater determinants, with atomic orbitals x,a, 
i e A, in the first rows of the determinant and x^, j « B, in the 
last rows. The ordering of the orbitals is crucial since it affects 
the phases of the basis kets and hence the signs of the matrix 
elements in theorem 1. Note that (4.1) exhibits an Sz quantum 
number M1 = {\A\ - \B\)/2, where \A\ and \B\ are the orders of 
sets A and B. 

The Frobenius-Perron theorem applies to the models of section 
2 when represented on the atomic configuration basis of (4.1). 
The only off-diagonal matrix elements arise from the kinetic-
energy and exchange operators. Consider the application of any 
one of the electron-hopping operators 

a+i,ai+\<, or a+i+laa„ (4.2) 

for i = 1 to TV- 1, to any one of the basis kets of (4.1). Because 
of (2.1) the operators of (4.2) commute with any a+

Jg, except for 
j = i + 1 or j = ;', and application of (4.2) gives back either 0 
or +1 times another basis ket, with a single spin-u electron shifted 
by a single site (from i + 1 to i or from i to i + 1). Thus, with 
the condition of (2.5), the nonzero off-diagonal elements of the 
("noncyclic") portion of the kinetic energy operator excluding the 
tiff and tN-l terms are negative. Since the exchange terms may 
be viewed as products of electron-hopping terms (4.2), it is seen 
that the noncyclic portion of the exchange operator also gives only 
negative off-diagonal matrix elements. Moreover, any basis ket 
of (4.1) can be transformed into any other with the same number 
of a- and /J-spins by an application of a sequence of electron-
hopping terms as in (4.2) with / = 1 to TV - 1. Hence, in a space 
with a given total spin component M1, the ft matrix (with f,i(+1 

^ 0 for i = 1 to TV - 1) cannot be block diagonalized via a 
permutation of rows and columns. Thus, within an M1 space the 
hypothesis conditions of theorem 1 are met except possibly for 
those involving the signs of the tXN = tNil and /1JV = JN?1 matrix 
elements. 

If these last sign conditions are presumed to hold, then theorem 
1 applies. In such a case the eigenstate V(M1) of lowest energy 
E(M1) in an Ms space must be nondegenerate and so also be of 
pure spin symmetry. Since a basis ket with the maximum number 
of doubly occupied sites has total spin S = |A/j| and since theorem 
1 implies that such kets are included in the expansion of V(M1), 

234 4 
Figure 1. The A and B graphs for cyclobutadiene configurations with 
TV = 4 electrons and total z-component of spin M1 = 1. Graph A (on the 
left) indicates which arrangements of the three spin-up electrons are 
connected by the Hamiltonian, while graph B (on the right) concerns the 
arrangements of the single spin-down electron. 

it must be that V(M1) also has this same spin. Finally, this M1 

space contains states corresponding to eigenstates of every possible 
spin S'> M1; thus, E(S) > E(S) for S'> S. The presumption 
of this paragraph may be verified in several different cases. 

Clearly in the noncyclic case the presumption applies: 
Theorem 2—If tlyN = J\%N = 0, then 

S'> S=* E(S) > E(S) 

This has been previously proved by Lieb and Mattis38 when all 
the Ts are zero. 

In the cyclic case consider the application of a+
Naa]a to a basis 

ket as in (9). This gives a nonzero result only in the case that 
the a-spin orbital on site 1 is initially occupied and that on site 
TV is initially unoccupied; then the result is obtained from the initial 
basis ket just by replacing a+

la in its definition by a+
Na. Next 

the anticommutation of the a+
Na through the \A\ - 1 other occupied 

a-spin orbitals leads to a basis ket multiplied by (-I)1-4I"1. Thus, 
1N1I

0+Na0Xm a n d '1Jv0+Ia0ATa also, when applied to a basis ket can 
only give back other basis kets with coefficients of sign CyX-I)H"1. 
The corresponding sign for the /3-spin term is (i)(-l) |B |_1. For 
the exchange term, viewed as a product of a- and 0-type hopping 
terms as in (4.2) with / = TV, the sign is (-1X-I)I-4I"1 (-I)'*1"1; this 
sign is negative if and only if the total number of electrons 

TVe = \A\ + \B\ (4.3) 

is even. Theorem 1 applies when all three signs are negative, so 
that we have the following:40 

Theorem 3—Suppose either that TVe = 4« + 2 with s = -\ or 
that TVe = 4« with s = +1. Then, for even spin 5 

S'> S=* E(S) > E(S) 

Theorem 4—Suppose either that TVe = An with s = -1 or that 
TVe = An + 2 with J = +1. Then, for odd spin S 

S'> S=> E(S) > E(S) 

Some aspects of the proofs for theorems 2-4 can be further 
elucidated in terms of graphs. These proofs depend critically on 
the manner in which the t terms of ft carry the basic configu
rations \AB) of (4.1) into one another. Now this can be repre
sented in terms of two graphs, one for the (spin-up) A part and 
one for the (spin-down) B part of the configurations. The A graph 
has vertices corresponding to the different allowed A configurations 
(i.e., to the different assignments of spin-up electrons to sites); 
further, this graph has edges corresponding to pairs of A con
figurations which are interchangable by a single application of 
one of the / terms of the Hamiltonian. Figure 1 illustrates the 
A and B graphs for the M1 = +1 space of (neutral) cyclobutadiene. 
Figure 2 applies for the M1 = 0 space, where the A and B graphs 

(40) A first-quantized spin-free approach to cyclic systems may be taken, 
much as done by Lieb and Mattis38 for the linear chain case. In place of spins 
one deals with "partitions" labeling irreducible representations of the sym
metric group, and these partitions are partially ordered by a relation termed 
"pouring" by Lieb and Mattis. It results that for Huckel (s = -1) systems 
if X is a partition with only odd-length columns, then the lowest energy state 
of symmetry X has energy less than that of any state with a symmetry 
"pourable" into X. For Mobius systems a parallel statement holds involving 
partitions X with only even-length columns. If specialized to Pauli-allowed 
states (for spin '/2 Fermions) these statements reduce to those proved in 
section 4. 
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Figure 2. Either the A and B graphs for cyclobutadiene configurations 
with N=A electrons and total z-component of spin M1 = 0. 

Figure 3. The product graph A X B for the two cyclobutadiene config
uration graphs of Figure 1. 

are identical (even up to vertex labels). In Figure 2 we have placed 
a + sign on two of the edges corresponding to /-matrix elements 
of the "wrong" sign (i.e., positive sign when the sign of the J 
parameter is included). 

Such (signed) A and B graph pairs are in close correspondence 
with the ft matrix on the corresponding Ms basis of states (4.1). 
For a pair of graphs A and B, one may define a product graph 
A X B such that, first, A X B has vertices which correspond to 
pairs (a, b) of vertices a from A and b from B, and second, A X 
B has an edge between two vertices (a, b) and (a', b') if either 
a = a' while b is adjacent to b' in B or else b = b' while a is 
adjacent to a ' in A. For instance, the product of the A and B 
graphs of Figure 1 is shown in Figure 3. Such A X B product 
graphs have adjacency matrices whose off-diagonal nonzero matrix 
elements are in one-to-one correspondence with those of the ft 
matrix; if the edges are signed as indicated above, then even the 
signs of these off-diagonal ft matrix elements are given. Now 
the condition for the application of the Frobenius-Perron theorem 

1 is that all the edges of the product graph have a negative sign, 
this in turn being equivalent to the condition that all the edges 
of the component A and B graphs have a negative sign. Clearly 
this condition is met for the M5 = 1 cyclobutadiene case of Figure 
1. But for the Ms = 0 case of Figure 2 the condition is not met, 
nor is it possible to do so by any change of phases of the basis 
states. (To see this it is useful, first, to note that changing the 
sign of a basis configuration simply amounts to changing the signs 
of all the edges incident on the corresponding graph vertex, and 
second, to note that a "Mobius twist" in a single cycle cannot be 
eliminated, such as is the case in the 12, 13, 14, 24 cycle of Figure 
2 with the twist between 24 and 12.) Thus, one way to state the 
conditions for application of the Frobenius-Perron theorem here 
is that all the cycles of the A and B graphs be of "Huckel type" 
(i.e., all the edges are of the "correct" sign). 

Finally, we note that these proof techniques seem only rarely 
to be directly applicable to other chemical ir-network "topologies". 
One such (rare) case is that of trimethylenemethane, for which 
it can be proved that the (neutral, TVC = 4) ground state is of spin 
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0 or 1, while the two- and six-electron ground states are spin 0. 

5. Additional Symmetry Theorems 
First we consider cases where the reflection &0 of (3.1) com

mutes with ft and where we have identified a lowest energy state 
W(S) which is nondegenerate within the Ms = S subspace. Since 
S0W(S) ^ 0 is of the same energy as W(S), it follows that Z0W(S) 
must differ from W(S) by no more than a phase. When S0 is 
applied to one of the basis kets in (4.1), the resultant merely has 
each occupied orbital index n replaced by -n = N - n + 1. That 
is, the occupied orbital indexes are in reverse order but may be 
restored to standard numerical order by anticommuting the various 
occupied a+

ka about. Explicity, a reverse-ordered product 
a*J1M

+
j2<; ..., a*j\A\a m a y De brought to standard order, first, by 

moving a+
;-r to the right through the \A\ - 1 other creation op

erators, thereby introducing a phase (-I)''4'"1, second, by moving 
a+

]Y to the right through the remaining \A\ - 2 misordered creation 
operators, thereby introducing a phase (-I)I-4I"2, etc. The phase 
associated with correctly reordering the ar-spins is (-l)MKMH)/2 

and that for the 0-spin is (-I)IWH)A The overall phase involves 
-1 raised to a power, which can be taken as 

[\A\(\A\-l)/2]-[\B\(\B\-\)/2] = 
l/2(\A\ + \B\ + 1)(M| -|5|) = (Ne + I)S (5.1) 

Because all the basis kets with Ms = S occur with positive ex
pansion coefficients in W(S) (for the cases we consider), it follows 
that 

S0W(S) = (-\)<-N'+^sW(S) (5.2) 

Recalling the various cases associated with theorems 2-4 we then 
find the following: 

Theorem 2'—Suppose [<x0, ft] = 0 and the hypothesis of 
theorem 2 holds. Then, for even A ,̂ the lowest state W(S) of spin 
S is symmetric or antisymmetric with respect to a0 as S is even 
or odd; for odd iVe, W(S) is symmetric or antisymmetric as Ne 

= An - 1 or Ne = An + 1. 
Theorem 3'—Suppose [<x0, ft] = 0 and the hypothesis of 

theorem 3 holds. Then, the lowest-energy state W(S) for any even 
S is symmetric with respect to &0. 

Theorem 4'—Suppose [<T0, ft] = 0 and the hypothesis of 
theorem 4 holds. Then, the lowest energy state W(S) for any odd 
S is antisymmetric with respect to a0. 

Now consider cases where the rotation C commutes with ft 
and where we have identified W(S) to be nondegenerate. Then, 
CW(S) differs from W(S) by no more than a phase. When C is 
applied to one of the basis kets of (4.1), the resultant has each 
occupied orbital index i replaced by i + 1; in addition, C introduces 
a factor -s for each a+

N„ converted to a+
u. All the resultant a+j„ 

obtained are in the standard numerical order except for any a+\„ 
which gave a factor -s. To place a+

u in the correct (first) position 
entails anticommuting it through all the other creation operators 
of the same a. Thus, if a+

1(r occurs in the resultant, a factor 
-5(-I)I-4I-' arises; for a+

1(3, the factor is -5 ( - l ) w " ' . But for the 
conditions of the different theorems 3 or 4, these phases are 
positive. 

Theorem 3"—Suppose [C, ft] = 0 and the hypothesis of 
theorem 3 holds. Then, the lowest energy state W(S) for any even 
spin S is symmetric with respect to C. 

Theorem 4"—Suppose [C, ft] = 0 and the hypothesis of 
theorem 4 holds. Then, W(S) for any odd spin is symmetric with 
respect to C. 

Finally, there are some theorems which give interrelations 
between the eigenvalues for certain corresponding Hamiltonians. 
Define the Hamiltonian ft' correspondent to ft to be equal except 
for the tUN = tNA terms which simply have opposite signs (in ft' 
and ft). The first theorem is as follows: 

Theorem 5—Let V have cyclic symmetry, let V be no more than 
quadratic in the «,-, and let N be odd. Then the ^-electron 
eigenvalue spectrum of ft is the same, up to a uniform shift, as 
the (2iV - ./Vc)-electron eigenvalue spectrum of ft'. 

The first step toward the proof involves noting that the first 
two conditions imply 
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V(I - /J1, 1 - h2, ..., 1 - nN) = K(ZJ1, ..., HN) + CjLn1 + C2 
/ = i 

(5.3) 

where C1 and c2 are constants dependent on the details of V. Next, 
from the results following (3.4) we have, when TV is odd, 

N 

KftK~[ = ft' + c, E /J, + C2 (5.4) 
/ - 1 

This along with the fact that the particle-hole (K) transformation 
interchanges /Ve- and (2N- AQ-electron spaces thus establishes 
the theorem. Independently Harris36 has proved the same result 
(without allowance either for JtJ ^ 0 or for the extensions of 
section 6). The more well-known result,39 with the JtJ+1 = 0, for 
even N (i.e., alternant) cycles does not actually interrelate ft and 
ft'. Rather, this result says, extended to 7W+1 < 0, the following: 

Theorem 6'—Let [C, K] = 0, let K be no more than quadratic 
in the H1, and let N be even. Then, the /V8- and (2./V- /Ve)-electron 
eigenvalue spectra of ft are the same, up to a uniform shift. 

The proof is much the same as for theorem 5, with ft replacing 
ft' on the right-hand side of (5.4). 

Our final theorem is the following: 
Theorem 7—Let ft have either s = -1 be Nc = An + 2 or 5 

= +1 with Ne = 47V. Then, the ground-state energy of ft is less 
than that of ft'. 

Here all the nonzero off-diagonal matrix elements of ft on the 
M3 = Q basis of (4.1) have already been noted to be negative. The 
correspondent Hamiltonian ft' will have all these matrix elements 
of the same magnitude but with some of them positive. Now ft~ 
has a ground state with a normalized M3 = Q component 

I*") = Zc(A,B)\AB) (5.5) 

AB 

Then the state 

|*+> = T.\c(A,B)\\AB) (5.6) 
AB 

is normalized too. Consider the expectation value 

(^+\ft\^+) = LL|c(^ ,B) | |c( /4 ' ,50K^5|^M'5 '> (5.7) 
ABA'B' 

which by the Rayleigh-Ritz variational principle must be an upper 
bound to the ground-state energy of ft. The diagonal (i.e., A = 
A\ B = B) terms in (5.7) are the same as those that appear on 
similarly expanding {^~\ft'\^'). However, the off-diagonal terms 
in (5.7) sometimes differ in phase from the corresponding terms 
in (y>~\ft~\$!~), the terms in (5.7) always being negative. Con
sequently (5.7) gives a lower upper bound to the ground-state 
energy of ft~, and the theorem is established. 
6. Extensions 

There are several extensions of the models of section 2. The 
first extension allows22 phases for the ?//+1 = ti+]J subject only 
to the constraint 

sign (fltiJ+l) = (-\)N'h (6.1) 

Then readjustment of the phases of the atomic orbitals xi<, a n d 
associated operators a+

ic, aic brings the kinetic energy operator 
to the form presumed in section 2. Thus, the theorems of sections 
4 and 5 still apply. 

A second type of extension allows the t:j parameters to be 
replaced by operators ?f</- which are functions of the number op
erators ZJ* such that the eigenvalues of ?/p/+1 = F1+1 ,• are negative, 
except possibly in the case of tly = TNl. Of particular interest 
are operators of the form 

2 

t,j = £ <,/"•"' PWPW (6.2) 
m,«=0 

where the P1^ are projection operators onto configurations with 
site occupancy p = 0, 1, and 2 pn site k, 
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Pk
(0) = 1Mh)2 - %h + 1 

Pk
{l) = -(h)1 + 2nk (6.3) 

Pk
(2) = Uh)2 ~ 1Ah 

The ?,/m'"' are scalars which are 0 if / and j are not neighbors 
and41 

';,<+ i(m,n) < 0 I = 1 to JV - 1 

signify"1'")) = 5 (6.4) 

Such a choice as (6.2) allows (perhaps quite reasonably)42 the 
electron-transfer parameters to depend upon the valence state of 
the atomic configurations involved. Because of the construction 
of (6.2) with (6.4), the off-diagonal matrix elements of the kinetic 
energy operator have the same signs as previously, and all the 
conclusions of sections 4 and 5 still apply. Similar extensions of 
the nonzero Jtj to operators J1J could also be made without spoiling 
the conclusions. 

A third sort of extension yields one-dimensional Hamiltonians 
in the Schrddinger picture (both with cyclic boundary conditions 
and without). To see this, consider the case when all the J1 j = 
0 and the f,i(+I are all equal and negative. Then rewrite ft of (2.3) 
in a "first-quantized" manner as 

ft = t EEI|x((»)><xi+1(n)l - 2 + |x,+i(")Xx,(«)l! + V 
i—In—1 

(6.5) 

where the introduction of the constant in the t sum may be 
counterbalanced by a constant of the opposing sign in V, which 
is a function of the |x<(«)> <X<(«)h Now Ez=^IxX")) <X/-i(")l can 
be viewed simply as a "translation" operator moving electron n 
a distance, say S = L/N, from one site to the next, so that 

E|x/(»)><XM(«)I = e x p( 5 ^ ) (6-6> 

where the equivalence (denoted by s ) here is understood to be 
for the restriction of the continuous space translation operator 
to our discrete space. Then taking the 8 —• 0 (or N —* °°, L = 
fixed) limit with t presumed to scale as 1/S2, say -h2/2md2, we 
find a Schrodinger Hamiltonian 

h2 N< d2 

ft - - 7 " E - T + K ' (X1, ...,xN) (6.7) 
2.m„=]dx „ 

Here V is a "local" potential in the usual sense. The so-called 
"sites" labeled by i are not to be interpreted as locating atoms here 
but rather as identifying positions around a ring. The presence 
of tlyN = tN1 ?± 0 (with s = -1) merely leads to cyclic boundary 
conditions (matching x = L to x = Q). It should perhaps also be 
noted that the present limiting procedure modifies some of the 
theorems of sections 4 and 5 in that strict nondegeneracies are 
no longer excluded (without additional conditions on V). 

7. Discussion 
The implications of our theorems for the ground-state sym

metries of a cyclic system are summarized in Table II. Of course 
the point-group symmetry statements apply only in the cases where 
the molecular model exhibits that symmetry. The spin symmetry 
results are from theorems 3 and 4 (which also provide additional 
results for higher spins). The ambiguity in ground-state spin for 
the (We = 4«)-electron Hiickel cycle and (Nc = An + 2)-electron 
Mobius cycle is not a deficiency in our proof; the occurrence of 
5* = 0 or 5 = 1 in these cases depends upon further details of the 
models. (For example, PPP models for symmetric Hiickel cycles 
with /V6 = 4 give ground-state spins S = 0 for /V = 4 sites and 
S= 1 for N = 5 sites.) The point-group results, which are given 
not in parentheses, follow from theorems 2', 3', 2", and 3". The 

(41) Of course, J,̂ ™"' a+i„cij„ = 0 if m - 0 or n = 2, so that our condition 
in (5.4) is without content for this case. 
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Table II. Summary of Results 

Klein and Trinajstic 

model type 

Hiickel 
(s = - l ) 

Mobius 
(s = + l ) 

Ne = 4« + 2 Ne = 4n 

S=O 
+ 
+ 

more than the Mobius 
case below 

S = O or S = I 
(*) 
(-) + 

less than the Hiickel 
case above 

S = O or S = I 
(T) 

(-) + 
less than the Mobius 

case below 

S=O 
+ 
+ 

more than the Hiickel 
case above 

property being characterized 

spin \ 
reflection > symmetries 
cyclic J 

J- stability 

spin \ 
reflection asymmetries 
cyclic J 

I stability 

point-group results in parentheses are not generally proved, for 
our whole class of models. But for the cyclic homocentric case 
with Tr-electrons and ir-centers equal in number, these results are 
found both for various approximate treatments31"35 of fairly general 
models and for exact results on Hiickel, free-electron, or VB36 

models. That is, the S = 1 results seem to apply for ions of the 
cyclic annulenes in either the s = - 1 , /V6 = 4« case or the s = +1, 
Ne = An + 2 case. Otherwise, 5 = 0 seems to be the typical 
occurrence. The stability results are from theorem 7. 

There is an evident similarity in form between Tables II and 
I. The similarity is made somewhat more pronounced if we note 
that S > 0 and/or a point-group antisymmetry implies43 an 
open-shell situation, which presumably is more reactive than a 
closed-shell situation. Further, when the number N of sites is odd, 
theorem 5 implies a close correspondence between (the eigenvalue 
spectrum associated to) diagonal boxes in these tables. However, 
there is a significant difference in the foundations between Tables 
I and II in that the conclusions of Table I are usually argued from 
simple Hiickel theory, whereas Table II has here been argued to 
apply for a wide variety of models including electron correlation, 
over a wide range of conditions and parameterizations. 

Some of the special models to which our theorems apply are 
(i) the Hiickel model, for which JQ = 0 and V is linear in the «,, 
(ii) the free-electron model, as in the third extension of section 
6, with V being a one-electron operator, (iii) the simple va
lence-bond model with the f,-i/"

l,'l) which mix different degrees of 

(42) See, e.g.: (a) Klein, D. J.; Soos, Z. G. MoI. Phys. 1971, 20, 1013. 
(b) Freed, K. F. Chem. Phys. 1974, 4, 80. 

(43) Kutzelnigg, W.; Smith, V. H., Jr. Int. J. Quantum Chem. 1968, 2, 
531. 

ionicity taken to the limit of 0, (iv) the Pariser-Parr-Pople-type 
models with any parameterization, where JtJ = 0 and V is (no 
more than) quadratic in the nt, (v) the free-electron model extended 
to include electron-electron interaction in Vas in (6.7), and (vi) 
the extended valence-bond model including interactions between 
states of different ionicities. 

We have termed the last model an extended valence-bond (VB) 
model rather than an extended Pariser-Parr-Pople (PPP) model 
simply because of the sign of the JSj. Commonly the various 
parameters of the PPP model are interpreted44 as simple integrals 
over Lowdin orthogonalized atomic orbitals, in which case the 
exchange integrals take the sign opposite to that of the J1J here. 
In contrast for VB models the "exchange parameters" are properly 
interpreted45 in a different fashion and take the sign considered 
here. Further we note that, although the Ju are set to 0 in the 
extended free-electron Hamiltonian Ti, the model still does include 
"exchange" in the ordinary sense, as can be seen on considering 
matrix elements of Ti over Slater determinants. 

In conclusion it is seen that a number of qualitative points the 
common Huckel-type rules make are independent of a great variety 
of decorations that are reasonably appended to the simple Hiickel 
model. The present theorems just provide broader justification 
for Huckel-type rules. Also they provide checks for approximate 
solutions to the considered models. 

(44) Fischer-Hjalmers, I. J. Chem. Phys. 1965, 42, 1962. 
(45) (a) Van Vleck, J. H.; Sherman, A. Rev. Mod. Phys. 1935, 7, 167. (b) 

Van Vleck, J. H. Phys. Rev. 1936, 49, 232. (c) Mattis, D. C. In "The Theory 
of Magnetism" Harper and Row: New York, 1965; Chapter 2. (d) Buleavski, 
L. N. Teor. Eksp. KHm. 1968, 4, 12. (e) Klein, D. J. Pure Appl. Chem. 1983, 
SS, 299. 


